
A0 A072 ‘458 CARNEGIE—MELLON UNIV PITTSBURGH PA MANAGEMENT SCIENC—ETC FIG 12/1
SET COVERING ALGORITI045 USING CUTTING PLANES. I€LJRISTICS. AC S—ETCIU)
41*. 79 E BALAS. A HO N00018—75-C—062 1

UNCLASSIFIED MSRR ’436 pit.

I
.

_ _

U
_

U
END

DAlE

S ~79
DEC

I


~~~~~1~~~

1’O ~~~~~~
_________ 

so  1315 111112 2
1~~~ IIffI~~~3.5

4 4 1 t2 01•1 
~~i~: N~~~

_____ 
I

~• 1HP25 iin~~1~~~ 
.

—~~~~ .- .— , .-- --. -,



~~~~~~~~~~~~~~~~~ LE~~~~~~E~~~~~~~~~~~~~~~~~~~~~~~~~

Carne gie -Mel Ion University
PITTSSUIGH. PB4NSYLVANIA 15213

V
I —J

L~.
GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION
WILLIAM LARIMER MELLON. FOUNOER D D C

4. _
~~~~~ I

I

I

. 
79 0 8 0~ 

(
~ ;4

- - 

-

~~~~~~~~

-

~~~~~~~~~~~

---

~~~~~~~~~
- -- -=

~~~~

- -



_____ _______

W . P. No. 6-7 9-80

/
Ma nagement Sciences Research Report No. 438

SET COVE RI NG ALGORITHMS USING CUTTING PLANE S ,

HEURISTICS , AND SUBG RADIENT OPTIMIZATION:

A C(}IPUTATIONA L STUDY

by

Egon Balas and Andrew Ho

July 1979

This report was prepared as part of the activities of the
Management Sciences Research Group, Carnegie-Mellon University,
under Grant MCS7~-l2026 A02 of the National Science Foundation
and Contract N0d~.4-75-C-062l NR 047-048 with the U.S. Office
of Naval Research. Reproduction in whole or in part is
permitted for any purpose of the U.S. Government.

Management Science Research Group D D C
Graduate School of Industrial Administration

Carnegie-Mellon University
Pittsburgh , PA 15213 NJG 9 ~979

DISTRIBUTION STATEMENT A
Approved for public release;

Distiibution Unlimited

79 08 08 064

~~ij _________ . _  
- --~~~ -~~ ~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~



__________ — — —‘ — —-——----

Abstract

We report on the implementation and computational testing of

several versions of a set covering algorithm, based on the family of

cutting planes from conditional bounds discussed in the companion

paper (21 . The algorithm uses a set of heuristics to find prime covers,

another set of heuristics to find feasible solutions to the dual linear

program which are needed to generate cuts, and subgradient optimization

to find lower bounda. It also uses implicit enumeration with some new

branching rules. Each of the ingredients was implemented and tested in

several versions. The variant of the algorithm that emerged as best

was run on 55 randomly generated test problems (20 of them from the

literature), with up to 200 constraints and 2000 variables. The results

show th. algorithm to be more reliable and efficient than earlier

procedures on large, sparse set covering problem..

____  --

~~ ~~ S - ~’.!~
Doc .1
UNAN~ ’ 0
Jus1I~~’:~

BY

DIS1IIB1’!’~ 
- 



—

SET COVERING ALGORITHMS USING CUTTING PLANES ,

HEURISTICS , AND SUBGRADIENT OPTIMIZATION:

A COMPUTATIONA L STUDY

by

Egon Bales and Andrew Ho

1. Introduction: Cutting Planes from Conditional Bounds.

In this paper we report on the implementation and computational

testing of an algorithm , or rather a class of algorithms, based on the

cutting planes from conditiona l bounds introduced in (11 , and also

using as ingredients several heuristics for finding feasible primal

and dual solutions, subgradient optimization of a Lagrangean function ,

and implicit enumeration with some new branching rules .

The family of cutting planes from conditional bounds is briefly

described in this section; a more detailed discussion of the properties

of these cuts is to be found in the companion paper (2]. In section 2

we describe the general features of the algorithm whose versions we

implemented and tested . Sections 3-7 discuss each of the ingredients

of our procedure , with comparisons of various versions based on computationa l

testing . Finally, section 8 summarizes our computational experience with

the algorithm as a whole. While the discussion focuses on a particular

instance of the algorithms in the class considered , namely the one that

emerg.d as the most successful from our computational experiments , we

a lso discuss possible variations wherever it seems useful.

As one can see from the computational results presented in section 8,

th. algorithm discussed here is a reliable and efficient tool for solving

large , sparse set covering problems of the kind that frequently occur in

practice . With a time limit of 10 minutes on the DEC 20/50, we have solved

- 
-~~~--~~~~~~~ TTT ~~~~~~~~~~~~~~~ -- - ~~— -—-- -

~~~ ~~~~~ ~~~
— -

~~
-

-2-

all but one of a set of 50 randomly generated set covering problems with

up to 200 constraints, 2000 variables, and 8000 nonzero matrix entries (here

“solving” means finding an optimal solution and proving its optimality),

never generating a branch and bound tree with more than 50 nodes. We

know of no other approach with comparable performance. For problems

4 that are too large to be solved within a reasonable time limit, the

procedure usually finds good feasible solutions, wi th a bound on the

distance from the optimum (for the one unsolved problem, this bound

was 2.3%). We also testad the algorithm on a set of 5% density problems,

but as density increases, the performance of the algorithm tends to decline.

We consider the set covering problem

(SC) mm [cx IAx>e, xaCO ,lJ n)

where A (a jj) is an m x n 0-1 matrix, and e = (1,... 4) has m components.

Let ai and a~ denote the t-th r~~ and the j-th column of A , and let

M [1,...,m), N (l,...,n3. We denote

~ [m5M (a~~
.u l1, j eN ; N~ (JcN~a~~~ lL iaM.

We will also use the pair of dua l linear programs

(I.) mm tcxj Ax~e , x20}

and

(D) max [ue~uA<c , u)O),

associated with (SC).

A vector ~€[0,ii
n1
satisfying Ax>e is called a cover, and S(x) • C itN~x~”l)

its support. A cover whose support is minimal, is prim.. For a cover x,

we denote T(x) — (isMta tx”l).

The theory underlying the family of cutting planes from conditional

______________ —~~~~~~~ =~~
-
~~~ -i~~— _

~

_-

~ 

—- _ _ —~ -
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~_ 1_

~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~


~~~~~~~~
i i _

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- — .  —-- — - ---- -~--.~-------~.—-- - — - .— - — -

—3—

bounds can be sussnarized as follows (for proofs of these statements

and further elaboration see the companion paper (2]).

Let 5
U

be some known upper bound on the value of (SC), and let u be

any feasible solution to (D), with s—c-uA , such that the condition

(1) E s4 ~
z.~-uelas ‘~

is satisfied for some S9~, S — Cj(l),. . . ,j(pfl. Further, let ~~~ i—i , . . .

be any collection of subsets of N satisfying

p
(2) E

~‘U) <
~j J aN.

i~ icQ~~~

Then every cover x such that cx<z
~

satisfies the disjunction

p
(3) v (x 4 —0 , JcQi) .

i—I. -‘

Further , for any choice of indices h(i)cM, i—I ,... ,p, the disjunction

(3) implies the inequality

(4) Ex 4~~~1j aw

where

W — U (N (i)”~ i~~i—i I

Finally, if J (i) Q~~ i—l ,. . . ,p, and if is a cover such that

ScS(i) and h
~

i)cT (T) flMj (i)~
i 1 ,...,p, then the inequality (4) cuts off ~

and defines a face t of

- Cx.R’~Ax�., E x �l, x)O , x
3

in teger , JaN) .
j aw 1

Using the above results , one can generate a sequence of cutting planes

that are all distinc t from each other , by generating a sequence of covers


~~~~~~~~~~~~~~~~~~ 
— 

_

-4-

x and feasible solutions u to (D) . The covers x provide upper bounds,

while the vectors u provide lower bounds on the value of (SC). Since

every inequality generated cuts off a cover satisfying all previously

generated inequalities , and the number of distinct covers is finite,

the procedure ends in a finite number of iterations , with an optimal

cover at hand .

2. Outline of the Algorithm.

The algorithm alternates between two sets of heuristics, one of

which finds a “good” prime cover x for the current problem and a

(possibly improved) upper bound , while the other generates a feasible

solution to (D) satisfying (1) for S—S(x), and from it a cutting plane

that Cuts off x, as well as a (possibly improved) lower bound . Whenever

a disjunction (3) is obtained with pal, all the variables indexed by Q1

are set to 0. The second set of heuristics is periodically supplemented

by subgradient optimization to obtain sharper lower bounds. Though this

procedure in i tself  must find an optimal cover in a finite number of

iterations , for large problems this may take too many cuts. Therefore,

as soon as the rate of improvement in the bounds decreases beyond a

certain value, the algorithm branches .

A schematic flowchart of the algorithm is given in figure 1. PRIMAL

designates the set of heuristics used for finding prime covers (feasible

primal solutions), DUAL the heuristics used for finding feasible dual

solutions. TEST is the routine for fixing variables at 0. CUT generates

a cutting plane violated by the current cover. SCR AD uses subgradient

optimization in an attempt to find an improved dual solution and lower

bound . BRANCH is the branching routine, which breaks up the current

~~~~~~ ~~~~ - -  —— - - —
_
.- - ----.-—— --- -~ -


~~~~~ f l C  ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~T z a ~~~~a~ - - -~~~ -~~ — -

—5-

I PRINAL i

!D U ~i1

TEST~ -

t . 3

I T EST~

~~~~~~~~~~N~~3 i BRANcH

SELECT -

Figure 1.

~~~ ~~~~~~~~~~~~~~~~~ 

- - — 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ______ ________ __________


-

-6-

problem into a number of sub prob lems , whi le SELECT chooses a new

sub prob lem t o be p rocessed .

The four decision boxes of the flowchart can be described as follows .

Let z~ a nd zL be the current upper and lower bound , respectively, on the

value of (SC).

1. If 2L ~ z,~, the current sub problem is fathomed (1.1). If

ZL < z~ and some variable belonging to the last prime cover has been

fixed at 0, a new cover needs to be found (1.2). Otherwise, a cut is

generated (1.3).

2. After adding a cut, the algorithm returns to PRIMAL (2.1) unless

the iteration counter is a multiple of ~ ; in which case (2 .2) it uses

subgradient optimization in an a tt empt to improve upon Z L • On the

basis of some experimenta tion , we set I M I / lO ~ ~ j M~/ 2O.

3. If > z.~, the current subproblem is fathomed (3.1).
jC

< z~ but the gap z~ - ZL
has decreased by at least €)‘O during the

last B iterations, we continue the iterative process (3.2). Otherwise,

we branch (3.3). Again, following some numerical experiments , we use

a 0.5 and
~

4~, with ~ as defined in 2.

4 If there are no active subprob letns, the algorithm stops: the

cover associated with z~ is optimal (4.1). Otherwise, it applies the

iterative procedure to the selected subproblem (4.2).

In the next five sections we discuss each of the ingredients of the

algorithm in s~ ae detail on the basis of computational testing of several

versions. After that we report on our computationa l experience with the

algorithm as a whole.

3. Prima l Heuristics.

The heuristics we use to generate prime covets are of the “greedy”

-

~~ T1 -
-

~~~~~~ ~~~~~~~~~~~~~~~~~



- _ _—Za._ . r —~ —~~ -~~~~~

-7—

type, in that they construct a cover b y a sequence of steps , each of

which consists of the selection of a variable x . tha t minimizes a
3

certain function f of the coefficients of x
3
. They differ in the

function f used to evaluate the variables. If k
1 

denotes the number

of positive coef ficient s of x
1 

in those rows of the current constraint

set not yet covered , the general form of the evaluation function is

f(c 1, k
1

) .

Since it is computationally cheaper to consider only a subset of

variables at a time and since every row must be covered anyhow, i.e., the

cover to be constructed must contain at least one of tl~ variables

having positive coefficient in any given row, we restrict the choice

at each step to the set of variables having a positive coefficient in

some specified row i~~14. Denoting by R the set of rows not yet covered

and by S the support of the cover to be cons t ructed , the basic procedure

that we use can be stated as follows.

Step 0. Set R = N, S = 0 , t = 1, and go to 1.

Step 1. If R = 0, go to 2.

Otherwise, let k
1 

= 
~MJnRI, ch oose i~ eR , and choose j ( t )  such that

f(c
J(~)~ 

kJ(t)
) mm f(c

1
,k.).

is

Set R R\Mj(t), S — S(J(j(t)}, t —t+1, and go to 1.

Step 2. Consider the elements i5S in order , and if S\fi} is the

support of a cover, set S ‘- S\(i). When all i5S have been considered,

S defines a prime cover.

As to the choice of i~ in Step 1, the criterion that suggests itself is

N
i l — mln lN~ l .

L.. ~~~~~
-—

~~~~~~
-

~~~~~~~~~~~~~~~~~~~~~~~
—- -

__ -- - 
-~~~~~



_______________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -

-8-

Rathe r than 4
~tnr’lement this choice rule directly, which would be

costly, we approximate it by ordering oncc and for all the row s of the

initial coefficient matrix A according to ducreasing ~~~ and a lways

choosing i~ as the last element of the ordered set R. Since the cuts

generated in the procedure also tend to have a decreasing number of l’s,

i.e., later cuts tend to have fewer l’s than earlier cuts , this rule

comes sufficiently close to choosing the row with the minimum number of l’s.

If the set N in step 1 is replaced by N, i.e., the choice is not

restricted to a certain row, and step 2 is removed, i.e., the procedure

is allowed to stop whenever a cover is obtained , whether prime or not,

then the above procedure with f(c.,k
1
) = c

1
/k

1 
is the greedy heuristic

shown by Chv~tal [3] to have the following property: if ~~~ is the value

of (SC) and 
~ieu 

is the value of a solution found by the heuristic , then

%euh’Zopt 
~ j=l

where

d = max
JaN -~

and this bound is best possible. From a practical point of view this

bound is very poor , and it can be shown [71 that there is no better bound

for any function f used in the above procedure. However, proving this

statement requires the construction of examples for which the worst case

bound is attained , and every fu nction f requires a d i f ferent  examp le. This

suggests as a practical remedy against the poor worst-case performance of

the heuristic , the in termit tent  use of several functions rather than a

single one . This idea has been imp lemented and tested with reasonabl y

good results. The following five functions f(c
1
,k
1
) were considered:

— ~~~~— ---~ ---~~~ ~~—



-9-

(i) c . ; (ii) c .Ik . ; (iii) c ./iog 2k. ; (iv) c ./k.log
2
k ;

(v) c
1
/k

1
ln k. . In cases (iii) and (iv), log2k . is to be replaced

by 1 when k. = 1; and in case (v) in k. is to be replaced by I when

k. = 1 or 2.
3

Using (i) amounts to simply choosing the lowest-cost variable at

each step. Criterion (ii) minimizes the unit cost of covering an uncovered

row. The functions (iii), (iv) and (v) select the same variable as

function (ii) whenever c~ = 1, Vj €N , but otherwise (iii) assigns less

weight, while (v) assigns more and (iv) even more weight to the number

k. of rows covered , versus the cost c
3

The five functions were tested on a set of 13 randomly generated

problems with 100 < m < 200, 100 ~ n < 1000, and 2% density. Though none

of them emerged as uniformly dominating any of the others in terms of

the quality of the solutions obtained , (iii) scored best and (ii) second

best , in the sense that of the 13 problems , (iii) gave the best solution

in 6 cases , (ii) in 5 cases. As to the other functions , the best solution

was found by (i) and (v) in 3 cases each , and by (iv) in 2 cases (the sum

of these numbers exceeds 13, since often more than one function gave a

best solution). Table 1 shows the 7, deviation from the optimum, of the

solution found by each function for each problem . The numbers in the

first column are those under which the problems are listed in section 8,

where they are also described in more detail. The best solution found

by any of the 5 functions never deviated from the optimum by more than 10.8%.

The above described procedure can be amended so as to produce , at

little extra cost, more than one cover, the best of which can then be

retained . This is done as follows . We first use the above heuristic to

find a cover. Then we consider the variables in the order of their

inclusion into the cover, and remove from the cover all those that have a

positive coefficient in at least one oversatisfied constraint. Next we



- - — - - 
- :_  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
~~

—- ‘1

-10-

Table I. Deviation from optimum (in 7.) of the values found by primal heuristics.

Problem data Function used with heuristic

No. m n c . c ./k . c~/log2
k. c

1
/k

1
log2k1 

c
1
/k

1
lnk

1
2.2 200 413 5.4 5.0 { 6.2 16.3 5.2

2.3 200 300 3.1 8.8 10.0 14.1 13.0

2.4 200 500 11.4 11.7 2.3 14.5 14.5

3.1 100 100 1.6 0.5 1.6 0.5 0.5

3.2 100 200 6.9 3.5 7.6 7.6 6.9

3.3 100 300 3.7 16.4 3.1 12.0 16.4

3.4 100 400 16.2 6.5 10.3 9.1 9.7

3.5 100 500 11.7 28.2 10.8 31.1 28.8

3.6 100 600 6.4 17.6 4.9 23.1 18.7

3.7 100 700 4.7 8.0 6.7 13.7 11.5

3.8 100 800 4.6 2.4 3.5 2.4 2 .4

3.9 100 900 7.3 15.9 7.3 9.2 6.4

3.10 100 1000 6.8 1.5 J 1.5 1.5 1.5

complete the cover again using the heuristic. We continue in this fashion -

until either a cover is generated which does not oversatisfy any of

the constraints, or the number of covers generated is some specified

integer ~~~. To find the most desirable value for ~~, we have app lied

this procedure with ~~l0 to each of the above described 13 problems,

with each of the 5 functions discussed . Somewhat surprisingly, we

found that of the 13 x 5 = 65 cases, the best of the 10 covers generated

was the first one in 22 instances , the second one in 34 instances , the

third one in 8 instances, and in 1 instance it was the fifth one. In

other words , on ly once was there an improvement after the third cover

was found , and this in spite of the fact that the best cover found was

not optimal in any of the 65 cases.

Consequently, we set c~3, and use function (iii) for the first cover,

a different function ((i) or (ii)) for the second cover, and again a

- - - -~~~~~~~~ - - - - - 

—-~~~- .-— - —--— - - - — — —-
~~~~

-- — -.~~~‘ ---- .-- —— — -—-- ----—- — — — ~--~ ~
— --.-—- ------ — .— -- ———— - “- — --

— - - — - - - - - - -- - ~~- - - ~~~------- -— ---—

-11—

different function for the third cover. This way the procedure

is still computationally cheap, and yields considerably better results

than the version that produces only one cover. We call this procedure

PRIMAL 1.

The general algorithm discussed in section 1 at times fixes

variables at 0. Whenever some variable belonging to the current cover

gets fixed at 0, we have to generate a new cover. Rather than starting

from scratch, in such situations we start with the partial Cover at hand ,

and complete the cover by using the proceã.ire discussed above. This

version of the heuristic we call PRIMAL 2.

When the dual heuristics to be discussed in the next section produce

a vector (u,s) such that (1) does not nold for S S(x), where x is the

current cover, either the dual solution u must be weakened (see the next

section), or else the cover x must be replaced by another one, say

such that (I) is satisfied for S=S(~). PRIMAL 3 was designed to

accomplish this starting with the cover at hand . It introduces into

the cove r additiona l variables x
1

such that s~ >O , in order of increasing

values of f (as defined in (iii)), and removes variables in order of

increasing values of s~ so as to keep the cover prime. While it is not

guaranteed to succeed , the percentage of failure is sufficiently low to

justify the use of PRIMAL 3. When it fails, the dual solution u must be

weakened as explained in the next section.

Whenever a new cut is generated , the last cover satisfies all the

constraints except for the newly added one. Since it is much cheaper to

obtain a new cover from the old one than to construct a new one from

scra tch , a special heuristic was implemented for this purpose. PRIMAL 4

adds to the current cover a number ~ of variables with positive coefficients

~~--—~~~~~~~~~~~~~~~~~~~~~

- - - -- - - -

— -
~.-----‘-~‘——--- —-——--—— — - -. —----——---—--— —- - —-~~— —..—- — —

~~
-

-12-

in the cut just generated, chosen in order of increasing c1, and then

removes from the cover redundant variables so as to make it prime .

Computational experiments with c=1 , .. . ,5 have shown ~=2 to give the

best results.

Finally, every time we apply the subgradient method to obtain an

improved lower bound , we also generate a new cover by using the reduced

costs Sj
produced by that procedure. This is done by subroutine PRIMAL 5,

by sett ing x . 1 if S

1

= 0, x
1

= 0 otherwise. The resulting vector either

is a cover, or else if row i is uncovered , then s~ > 0, YjaN i, and variable

can be increased to u~ + mm s . This creates at least one new reduced cost
j aN -~

equa l to 0, and for each suc~i k we set = 1. We proceed this way

until every row is covered , after which we make sure the cover is prime, like

in Step 2 of PRIMAL 1. PRIMAL 5 produces consistently better covers

(hence better upper bounds) than any of the other 4 procedures; but

obtaining the reduced costs by subgradient optimization is many times more

expensive than producing them by the dual heuristics, as will be discussed below.

Whi le the conditions for using PRIMAL 2, 3 and 5 have been spelled

out, the choice between PRIMAL 1 and 4 seems open at this point. PRI MAL 4

is computationally cheaper , but it often produces a cover that differs

very little from the previous one. PRIMAL I is more expensive, but

yields a genuinely new cover. We follow the strategy of using PRI MAL 1

to obtain the first cover, then using PRIMAL 4, except for every 9-th

iteration, when ~e again use PRIMAL 1. As to the value of 9, computational

experiments have led us to start with 9 1 and then set 9 — win (9+1 ,71.

In other words, at the beginning we return to PRIMAL 1 more frequently,

then at regular intervals of , say, 7 iterations .

3. Dual Hs~uristics.

The purpose of the dual heuristics is to find , at a low computationa l

_ _ _ _ _ _ _ _ .. - -~~- --~~~~~~~T~~J ~~~~~~~~~~~~~~~~~ I — -~ - - k-’-

~ - - -- -- - .-—~~~~-

-13-

cost, a feasible solution to the dual linear program (D) associated with

the current problem, with as high an objective function value (lower bound

on the value of (D), hence of (SC)), as possible. In addition, the dual

solution u and its associated reduced cost vector s=c-uA have to satisfy

condition (I) for S S(x), where x is the current cover. Again, we use

a procedure of the “greedy” type , which considers the variables in some

prescribed order and assigns to each one the maximum value that can be

assigned without violating some constraint or changing some earlier value

assignment. Since it is known (see [2], Theorem 4) that for a feasible solution

u to (D), the vector s = c - uA satisfies (1) for S=S(x) if u satisfies

u(Ax- c)=O, in considering the variables u~ priority is given to i5T(x),

where T(x) = ~i5M~a
mx = 1). Denoting by R the index set of the dual

variables (rows) not yet assigned a value (ordered in accordance with M),

the basic procedure is as follows.

Step 0. Set R = MflT(x), s c , t 1 , and go to 1.

Step 1. If R = 0, go to 2. Otherwise, let I C R, choose i(t)

such that

~
Ni(t)I = win

is’

and let

u — win s .

i (t)

Then set

—
{

S
~

-

~
•1i(t) -1

~~t(t)

J CN\Nj(t),

R — R \ (i (t) J , t t + 1, and go to 1.

Step 2. If Step 2 is entered for the first time, set R — M\T(x) and

go to 1. Otherwise, stop: u is a feasib le solution to (D).

Restricting the choice of t(t) to a subset I of R has the sole

-~~ .~~~~:
‘_

~~~~~~~~~~~
x__— —~~~

-
~~~~

-
. •

-
~~~~~~~~~~~~~~~~~~~~~~~~~ =. - - . -~~~~~~~~



-14-

purpose of making this choice computationally less costly, at the

risk of sacrificing some quality. Since the rows of the original matrix

A are ordered according to decreasing tN 1 t and the cuts generated also

tend to have progressively fewer l’s, we define I as the union of (i)

the last element of MQflR, where M0 is the row index set of the original constraint

matrix, and (ii) the last X elements of R, where X — win ~~~~ ~flM I~.
This makes sure that the choice rarely -- if at all -- misses the minimum
of ~~~ over all. ttR. This procedure we call DUAL 1.

A feasible solution to the current (D) remains feasible after adding

a new cut to (SC), i.e., a new column to the constraint set of (D), but

usually ceases to be feasibl e if the new variable is assigned a positive

value. On the other hand , if the new variable is set to 0, the solution

remains unchanged. Furthermore, if a new solution is generated from

scra tch by the same heuristic , it is often identical to the previous one.

DUAL 2 is a version of the heuristic that starts with the infeasible

solution obtained from the last feasible solution u by assigning a value

of 1 to the new variable associated with the last cut . This guarantees

that the dual solution to be obtained will differ from all the previous

ones. Next the remaining variables are considered in a certain order, and

set to 0 (or, in the case of the last variable , to the maximum allowable

value),  until the solution becomes feasible. The order in which the

variables u
1 
are considered is that of decreasing number of positive

coefficients in cons traints of (D) that are violated , with priority given

to variables u~ corresponding to primal constraints that are oversatisfied

by the current cover.

Finally,  a vector (u,s) generated by DUAL 1 or DUAL 2 may violate

condition (1) for S—S(x), where x is the current cover. In such cases the

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ __ _.: -l _ L_ . __ _ _ ..__ —.-— .-- -“- ~~..-1~.~ ~~~~~~~~


.— — — - ---

— 15—

algorithm goes to PRIMAL 3, in an attempt to find a new cover I such

that (1) holds for S”S(iD . Though our computationa l experience has been

that PRIMAL-3 seldom fails to find such a cover , failure does sometimes

occur. In such cases we use DUAL 3 to modify the solution u, while

weakening it as little as possible , so as to satisf y (I). DUAL 3

considers the variables u~ , itM ’,T(x), in decreasing order of ~
Nt

rS(x)l, and

successively reduces their value until (1) is satisfied for S—S(x). Since

4 this latter condition always holds when all u~. i~l’~
\.T(x), are set to 0,

the procedure a lways ends with a solution having the required property.

While DUAL 3 is used under clearly defined circumstances, DUAL 1 and

DUAL 2 can be used intermittently. DUAL 2 is computationally

~ teaper than DUAL 1 and guarantees a new solution, but DUAL 1 is

more likely to produce an improved lower bound . We start with DUAL 1

and then use DUAL 2, except for every ~-ch iteration , when we again use

DUAL I. Based on some computational experimentation , we set ~~4.

4. Subgradjent Optimization.

While the dua l heuristics provide reasonably good feasible solutions

to (D) at a low computational cost, a sharper lower bound could of course

be obtained by solving to optimality the linear program (D). After

sufficient cuts have been added to the constraint set of (SC), the value

of the curren t problem (D) may exceed thus bringing the procedure to

an end . However , the computationa l effort involved in solving (D) by the

simplex method is considerable , and increases at least quadraticall y with

the rnmiber of cuts added to the constraint set of (SC). On the other hand ,

one can use subgradient optimi*ation to find an optimal or near-optimal

solution to (D) at a computationa l cost that seems to increase only linearl y

-

~

~~~~~~~~~~~~ ~~~~~~~~~~~~ .. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ,- -


~~ - -_~~~~~ — - . . - . -

-16—

with the number of cuts added. This is what we are doing periodically

in order to generate lower bounds stronger than those obtained by the dual

heuristics. Though the subgradient method consistently produces a stronger

bound than the heuristics, the cuts derived from the dual solution obtained

this way t•nd to be weaker than those derived from the heuristically

genera ted dual solutions . This is so because the reduced costs obtained

by the subgradient method do not usually satisfy (1), and the dual solution u

(together with the bound ue) has to be weakened in order to get (I) satisfied.

The subgradient method that we use is a specialization of the

general procedure discussed , for instance, in [61 or (5 1 . We wish to find

or approximate

max win L(x,u) — cx + ue - uAx ,
u~F x ~G

where F and G are suitable relaxations (supersets) of the feasible sets

of (D) and (L) respectively, i.e.,

F ~ (u~uA < c, 0 < u~ < U~, Vi)

and

C ~ (XIAX 2 e, 0 < x
1

< 1, v j) ,

where — win c , Vi.

During every subgredient iteration , given the current vector ~
k
, we

I

--

_ I

—17—

solve the problem

k
(6) win L(x ,u),

xeC
k k k

and if x(u) denotes an optimal solution to (6), we put d — e - Ax(u) ,

k+l k k
u = P F(u +tkd).

Here the direction vector dk is a subgradient of L(x,u) at u — ~
k
, the

scal•r t.~ is the step length, while P~(g) is the projection of the

vector g on F. The step length is of the form

k k
Xk

(Zu -
L(x(u) ,u ~

tk
—

where 0 < < 2 and the double bars denote the Euclidean norm; and if

we take the relaxation of the feasible set of (D) to be F — [u~0<u~~),

then the projection of g_1u
k+t,~dk on F is

(~~i
if

~~
>

~~~
P~(g~) — 

~ 
g~ if ~

ifg~~< O .

We tried two different relaxations C of the feasible set of (L).

The first one,

C
1 [xcR~~O < x~ ~ 1, jaN),

makes the solution of (6) trivial: the optimum is attained at

‘—0 ifuka < c
k ( k 1 ~

xj
(u ) c[0 ,l1 if u a

1 
—

1 if U 5
1 
> C

1

k
For jaN such that u a~ - c1, where any x

1
c(O ,1] is optimal, we have tried

to set x
1 

— 0, 1/2 and 1, and x
1 

— 1 gave on the average slightly better

_ _ _ _ _  
I ~~~i I 2 ~~~~~~~~~~ - -  —



- — - . - - . ——--.— — — — — - . — —- — —-——-—-- — -.~---- —-

-18-

results ; so this is what we use.

For the second relaxation, we choose a (maximal) subset 11 C M such

that Nj N
k
aO, Vi ,kaM, i,’k, and define

( x
1
� i , ici~i

jaNi

C2 
— ,~ xcR~ E d x ~ 

d0jaN 1 ~

(lb 
O < x ~~< l~ jaN

where

( ~M — 1 if is U_Ni4 ~ jaM
I otherwise

and d0 
-

The idea of using the inequalities defined by a family of disjoint

subsets N~ N , LaM , is borrowed from J. Etcheberry [41 . The extra

inequality that we add , which is the sum of the remaining inequalities

of Ax 
~ 

e, usual ly  makes C2 considerably more constrained .

Wh i le C2 is a tighter relaxation than C1, it is also one for which

• solving (6) is considerably wore expensive. We therefore restrict ourselves,

when using G2, to approximating the optimum of (6) by a fast heuristic.

In this version , the subgradient procedure using C2 is about 1.2-1.3

times more time consuming than the one using C1, but it also tends to be

more reliab le and to occasionally produce a slightly better bound. A

comparison on 5 randomly generated 200 x 2000 problems (with 8000 nonzero

matrix entries) showed the version using C
2 to generate 0.61 times the

number of nodes (of the search tree) generated by the version using C1,

and to require 0.85 times the amount of tota l time required by the latter.

- - - 

—~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



-. 
~~~~~~~~~~~ —.-- --- — —--.—.—------—-- —.-- —-- - — .—- —- — —-- —-—-—-

-19-

Currently the main version of our algorithm uses C
2
.

We have tested various strategies for choosing the value of the

parameter Xk
in the definition of the step length tk~

and ended up with

setting X
k

= 2 at the start, and then dividing the current
~k

by 1/2 whenever

there is no improvement in the value of the Lagrangean for 7 consecutive

iterations of SGRAD.

To start the subgradient optimization procedure , one needs an initial

solution u°. We use f or this purpose the vector u obtained from the dual

heuristics when we apply SGRAD the first time to a problem; then at subsequent

applications of SCRAD we use as u° the dual solution obtained in the last

application of SCRAD , which is usually considerably better than the one

obtained from the dual heuristics. The quality of the starting solution

apparently makes a great difference in the computational effort involved in

SGRAD: the first application of SGRAD takes about 6 times the computational

ef for t required by subsequent applications to the same problem (amended with

cuts).

As to the overall usefulness of the subgradient method in our

algorithm, our experience has been that though it is computationally more

expensive than the dual heuristics by 1 and often 2 orders of magnitude ,

subgradient optimization nevertheless pays off. On the one hand , i t

produces consistently better lower bounds than the heuristics , by a

margin tha t tends to increase with problem size; on the other, it

provides a set of reduced costs that can be used by PRIMAL 5 to generate

consistently better covers , and hence better upper bounds , than the other

primal heuristics . These findings are illustrated in Table 2. The

problems listed there are all randomly generated , 2~ density set

covering problems, described in more detail in section 8.

~~~~~ :LI~~~~~’ ---~ - .. 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ _ _ _ _  

-:

- -~~~~---- — ----- -.- .- -. — - -— .- - — .—- — — —
~~

—
~1~~~

-20-

Table 2. Improvement in bounds (in °l)~ due to SGRA D and PRIMAL 5.

Problem data Improvement (7,)
SGRAD

Lower bound U pp er bound i terations
No. m n SGRAD PRIMAL 5 to obtain

versus versus lower
DUAL 1 PRIMAL 1 bound

2 . 2 200 413 8.18 1.84 172

2.3 200 300 3.37 3.02 119

2.4 200 500 11.27 4.04 78

3.l 100 100 1.21 1.53 41

3.2 100 200 1.57 3.69 23

3.3 100 300 4.90 3.05 82

3.4 1-00 400 6.07 9.30 80

3.5 100 500 0.61 9.08 44

3.6 100 600 7.39 3.65 178

3.7 100 700 9.35 3.63 139

3.8 100 800 15.13 3.15 164

3.9 100 900 2.87 6 .77 263

3.10 100 1000 6.58 2.11 93

5.1 200 2000 13.82 8.90 93

5.2 200 2000 15.98 0 176

5.3 200 2000 15.90 6.22 96

5. 4 200 2000 14.95 0.78 148

5.5 200 2000 15.90 6.19 97

5.6 200 2000 12.38 5.31 99

5.7 200 2000 19.18 0.97 146

5.8 200 2000 16.25 7.89 183

5.9 200 2000 8.74 3.37 123

5.10 200 2000 12.29 6.03 92

— ~~~~~~~~~~~~~~~
-
~~

-- - ---
______ TT~~ I ~~~~~~~~~~~~~~

-


~~~~~~
--i

~
-T-

~~i~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— —-- - - - -~- _ _ ~~~~~~ _ - - . - ~...... —

-21—

Table 3. Average time per application of DUAL 1 or 2 and SCRAD

DUAL 1 or 2 SGRAD

No. of Total Average No. of Total Average
times time~~ time times time~~ time

-
~ used* spent for one used* spent for one

_______ ________ 

application application

1,638 207.4 0.127 181 623.3 [ 3.44

* Total for all 23 problems of Table 2

** DEC 20/50 seconds

Table 4. Cutting plane algorithm with and wid~iout SGRAD

- Problem data WitL out SGRA D With SGRAD*

No. m n No. of Time** No. of Time**
cuts cuts

1.1 15 32 3 0.30 0 0.73

1.2 30 30 12 0.58 0 0.77

1.3 30 40 14 0.77 18 1.28

1.4 30 50 28 1.44 10 1.57

1.5 30 60 115 9.44 0 0.76

1.6 30 60 77 4.75 29 2.00

1.7 30 70 >438 >120.00 0 1.27

1.8 30 70 >480 >120.00 0 0.87

1.9 30 80 211 23.35 0 1.12

1.10 30 80 47 3.40 6 1.23

1.11 30 90 >406 >120.00 72 6.60

1.12 30 90 >496 >120.00 0 1.16

* SGRAD applied at first and every lO-th iteration

** DEC 20/50 seconds

• — ---—--- —-—--

L~
_
~ ~~~~~~~~~~~~~~~~~~~~ 

- - - - 

~~~~~~~~~~~~~~ 
-

~;~~~~
- • -——— ----— - - - _____

—- -- —~~~~~~~—-.~~--_---~~~— - --- - --—- —
-

‘- - - - .~~- - -- “ . - .

-22-

Table 3 shows the average time needed for one application of

the heuristic DUAL I or 2, and one application of SCRAD , with the

averages taken over all applications to all of the 23 problems of

L Table 2. The comparison shows SGRAD to be about 27 times (3.44:0.127 = 27)

as time consuming as DUAL I or 2. The factor 27 is, however, an average:

as mentioned earlier, the first application of SGRAD to a problem is

about 6 times as expensive as subsequent applications to the same

problem (with added inequalities); in particular , the first application

of SGRAD requires about 100 times wore time than an application of

DUAL 1 or 2, while subsequent applications to amended versions of the

same problem require on the average 15 times as much time as DUAL 1 or 2.

Finally, to support our contention that in spite of these great

time differences the use of SGRAD pays off , we show in Table 4 the

outcome of the cutting plane procedure with and without SCRAD, on a

set of 12 set covering problems taken from the literature and described

in section 8. These problems , all of which except for 1.1 have unit

costs, were particularly hard for the cutting plane algorithm without

SGRAD , which failed to solve 4 of them within a time limit of 2 minutes.

6. Fixing Variables and Generating Cuts.

Every time a new solution u to (D) is obtained either by one of the

heuristics or by subgradient optimization , the algorithm searches for

variables x
1
such that s~ ~

z~ - ue, and fixes them at 0, removing the

corresponding indices from N.

In tuitively, one would be inclined to think that this feature of

the algorithm becomes ope rative only a f t e r many i terations , when the

gap Z
U
_Z
L has been narrowed down considerably. This, however, was not the

L~. -_—~~~~~ - -~~~-~~~-- — ---- -

__ _______ — ~~~~~~~ -~--—___ -- -
-

-
- -

-
~
- ______ -- -

-23—

case on the randomly generated problems that we solved . Substantial

-
- numbers of variables were usually fixed at 0 quite e~ -l y in the procedure ,

and by the time the first branching occurred , the number of variables left

was almost always close to the number m of initial constraints , as can be

seen from the data of section 8.

To generate a cut , the algorithm uses a subroutine that implements

the procedure discussed in [2] . Let x be the current cover , S(x) and T(x)

defined as above , and z~ the current upper bound .

Step 0. Set W = 0, S = cjeS(x)ts .>O}, y ue, t = 1, and go to 1.

Step 1. Let

v~ = win [wa x s •, win [s.~ s . � z~
-

jcS ~ j€S ~

J = [jeS s . = vt), ~
= [jaN15

1 � v~J, M~ = U M ..

Choose i (t) such that

Ni(t) QLW~
= win IN . ‘QUWI
iaT(xYM~

and let ~j(t)~ =

Then set ~J .-

~
JU(Nj(t)Q), y — y + s

1
(t). If y

~
z~ , go to 2.

Otherwise set S .— S’ cj(t)i,

5
{
~
j

- 5j(t) J€Q PNi(t~
s . otherwise ,
3

t — t + 1, and go to 1.

~~ep
2. Add to (SC) the inequality

z x
~

1.
j ~W

This procedure terminates after a number of iterations equa l to the

number of jcS (x) such tha t > 0, wi th an inequality satisfied by every

L~~ T~~ : ::_- — . ~~_ T ~~~~T ~~~~~~~~~~~ ~ ‘—

- ______—‘n_ - —-- -

-24-

cover better than the one associated with z~ , and violated by the last

cover x. Typically, the cuts tend to l’ecome successively stronger during

the procedure, the last few cuts often having lust one or two l’s. The

total number of cuts required to solve a m x n problem increases with both

m and n. For the randomly generated sparse problems solved in our experiment

the number of cuts needed was typically less than 3m or n/3, as can be

seen from the results of section 8. This of course refers to the number

of cuts required when the cuts are used within the framework of our

algorithm in the class discussed here, which also uses implicit enumeration.

The cuts by themselves, without branching (but with periodic use of SGRAD)

were able to solve all of the 20 test problems from the literature that we

could obtain , and all but one of the 10 tes t problems wi th m = 100 and

100 < n < 1000 that we generated , as shown in section 8. As to the larger

problems , six of the ten 200 x 1000 problems and four of the ten 200 x 2000

problems were solved by cutting planes only, without branching (see section 8

for details).

7. Branching and Node Selection.

• As mentioned in section 2, we branch whenever the gap -

decreases by less than e = 0.5 during a sequence of 4~ iterations , where ~

is the frequency of app lying SGRA D (every ~-th iteration) . The actual

rule we use is slightly more sophisticated: if for 3c~ iterations the

decrease in z~ - Z
L

is less than ~
— 0.5 , then we branch at the first

i t e ra t ion where the current (say the k -th) dua l solution gives a bound

greater than a weighted sum of the earlier bounds , namely where

k
k_l

lk .l j
u e > Z (~) u e .

i-I

- . i~~~~~~-- ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ — — - - - -
~~~~~



_________ ----- - — - -

• -25-

If this requirement is not met for any of the next ~ iterations ,

and the decrease in the gap is still less than e = 0.5 , then (i.e., after

a total of 4~ iterations) we branch.

We use two branching rules intermittently . The first one is

based on a disjunction (3), which is strenghened to (7) when used for

bra nching, so as to partition the feasible set:

p
(7) ~/ (x. 0, JeQ~ ; E x > 1, k 1 ,. . . ,i—l)

i=l ~

The sets Q~ for the disjunction 
( 7 )  are constructed by a p rocedure

simila r to Step 1 of the cut generating routine. The use of the same

criterion (of minimizing N
h(i)\Qj) as in the cut generating routine is

motivated by the at tempt to guarantee that each subproblem created by the

branching will have at  least one inequality with as few l’s as possible.

The second branching rule is a variation of the one proposed by

.1. Etcheberry [4~ . We choose two row indices i,k~M, such that i is the

last element in the ordered set M , and k # i , wi th

INkflNi I win I NhflNjl,
N
h~~

4
i~
O

- 

- , 
and then branch on the disjunction

(8) (x 0, jcNjflNk) v 
( 

~~ x
1 

> 1) .
I j eN iflN k

Whenever IN iflNk l 1, which is usually the case , the second term

becomes x
1

1, where cj } ~N~r~k , and (8) becomes a special case of the usua l

branching dichotomy (x
1
0)v(x

1
’l). However, a comparison of the rule based on

(8) with the usual branching dichotomy combined with a choice rule for the

branching variable different from the one used here, has si~own (8) to

be on the average considerably bet ter .

~~~~~~~~~~~~~~ 
- -

~~~~

-

~~~~~~

-

~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~
• •  . ~~~~~~~~~~~~~~~~~~~~



- ~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~

-26-

The choice between rule 1 (using the disjunction (7)) and rule 2

(using the disjunction (8)) is dictated by the following considerations .

Since none of the two rules dominates the other, i.e., at certain nodes it

may be more advantageous to use rule 1, whereas at other nodes (of the

same search tree) rule 2 may be preferable , we introduce a measure of

relative efficiency of rule I (as compared to the usual dichotomy), and then

choose rule 1 whenever it meets the efficiency requirements. With the

traditiona l dichotomy, the k-th level of the (binary) search tree contains

nodes , with k variables fixed at each node, i.e., a total of k2k variables

fixed. In other words, in order to fix f = k2k variables by generating a

breadth-first search tree, one has to break up the feasible set into

subsets. Substituting for k in the expression for f, we find that with the

usual dichotomy, breaking up the feasible set into p subsets (all on the

same level of the search tree) makes it possible to fix a total of f = plog2p

variables. Therefore , in order to use branching rule 1, i.e., the

disjunction (7), which breaks up the feasible set into p subsets , we

require that

p
(i) ~ 1I Q~I >~pplog

2p,

i . e . , that the number of variables fixed on all branches be greater than

P times plog
2
p. As to the value of the parameter ~p, after some experimentation

we found that ~ < 1 implies that disjunction (7) will be preferred to (8)

about 2/3 of the time , while ~ > 3 implies the opposite. A judicious

mix of the two rules requires 1 < ~ < 3. The current version of the

algorithm uses ~ 1.

Besides condition (i), we have also found it useful to require that (ii)

— ~~ —~~~ •-— — —- •--- — ~~~~~~ .~~~~~~~~~~~~ • . -~~~~

_~~~~z~~~~~ . T - l~~~~ ~~~~~~~~~~~~~~~~~ - - — -- — __________________

there be at most one singleton among the sets Q~. i—l ,... ,p , a nd that (i i i) p

not exceed a specified constant , which we usually set to 8. Whenever

conditions (i), (ii) and (iii) are met, we use disjunction (7); otherwise

we use disjunction (8).

Our node selection rule is LIFO; i.e., whenever available , we choose

one of the nodes created by the last branching . When rule 1 is used , we

choose the p nodes created by disjunction (7) in order of decreasing IQ~I ;
and when rule 2 is used, we choose first the node defined by x~=0~ jcNjflNk,

then the other. When a node is fathomed , we first look for an unfathomed

brother node, and if none is available , we go to the father node.

Table 5 contains information concerning our branching rules. The

problems listed are all those among the 200 X 1000 and 200 x 2000, 27. density

problems, (i.e., among the problems in sets 4 and 5) , whose solution

required branching . The criterion for choosing the branching rule was

the one described above, with ~ = 1. For each problem, the table gives

the number of branchings according to rule 1 and rule 2. Further , each

branching according to rule 1 is described by a sequence of numbers in

parantheses ; where the length of the sequence is the number of branches

created , and each number in the sequence is the number of variables fixed

• at 0 on the corresponding branch . Thus, for solving problem 4.4 (with

m — 200 , n — 1000 , density 27.), the code branched 3 times , usi ng each time

rule I (disjunction (7)). The first branching created 5 new nodes

• (aubproblems), with 58 variables fixed at 0 on the first branch , 53 on the

second , 44 on the third , etc.

A typica l search tree is illustrated in Fig. 2: it is the one

corresponding to problem 5.1. The symbol©means a bra nching based on

rule 2. The numbers on the arcs stand for the variables fixed by branching

rule 1. At node 0, the al gorithm generates 30 cuts , then branches according

_______ _____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~L -~~ - . - - • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

• ~~~~~~~~~~~~~ ~~~ — -— — —- 5- •- ---—~~~~.-— ———-—-•— —5--- • -‘

—

156

(
~1 ~~~~~~ V U~~~I..~L4,&

1~~ .~5C~%3

‘~4~ 15O~ ~~ tq5 va .s~~U.4

~~ -1~~~(/(\~~~~~zi~~5 / \~
‘\~~~~~~~~~~~

/s\ ~~~~~~~~~
/ \

III C&Lt~ ~3 I c.~4~3 .s~
_ _.ca ~~~

c~ ,~ 1SI.
/111 l~~O C’i~.$/ / I \

S ~~

,-(~..-./ J. ftL
.~ 2 ~ 2 1.3 4,1 u a~~~k~

ISO

6
I~J~

.~5:~3

I~4 161 (ut~~~5 I * t ~4~

1.

~~~~~~~~~~~~ ~~~~~~T’-~ - - • - -•
. .: - -.



• - •~~~~~
S- --=- --=-S

~
----- - 5-- -  - - - ---- — - - - - 

‘I’

-28-

Table 5. Information on the use of the two branching rules

Problem data No. of branchings No. of variables fixed on each branch,
_____ _____ 

according to for every branching according to
No. m n Rule 1 Rule_2_ Rule 1

3.4 200 
I 
1000 3 0 (58,53,44,15,6), (15,7,5), (15,6,5,4)

3.6 200 1000 6 1 (20,10,8,7,6,1), (24,12,10,9,5,3,1),
(7 ,5 ,2 ,2 ) ,  (14,4,2,1), (16,14,11,4,4), (6,1)

3.8 200 1000 2 2 (26,13,7,5,2,2 ) ,  (8 ,7,1)

3.9 200 1000 6 5 (40,21,10,9,8,4,2), (18,15,10,3,2,1),
(14,13,13,13,2), (15,4,2), (25,1), (10,3,1)

4.1 200 2000 5 3 (42,24 ,1), (15 ,14 ,14 ,9,3,3,2,1),
(32 ,24 ,19,9 ,2 ) ,  (8 ,6 ,2 ) ,  (16 ,8, 3, 3)

4.4 200 2000 9 3 (35,33,33,27 ,6), (50,26,3,2 ) ,  (40,6,5,2,1),
(16,10,5,4,1), (20,16,10,5,1), (41 ,12 ,9 , 5 ,3)
(7 ,7,6,2,1), (21,4,2 ) ,  (30,16,5,3,2)

4.7 200 2000 2 4 (5,1), (36,11,5,5)

4.8 200 2000 4 2 (35,9,3,3,2,1), (23,8,8,3,2), (9,4,4,2)
(20 ,13,9,5,3,3,3 ,2)

200 2000 1 0 .
~4,20,17 ,10,3,2)

to rule 2, creating 2 new nodes. Prior to branching, the upper and lower

bounds are z
~
—2S6 and z~—25O.58 respectively , and there are 204 variables,

i.e., 1796 variables have been fixed at 0. Next the algorithm selects node 2,

• generates another 30 cuts, improves the lower bound to ZL~
2SO

~
83
~ 

and fixes

another 9 variables before branching, leaving 195. This time the branching

is according to rule 1, and 3 new nodes are created, with 1, 24 and 42 new

variables fixed at nodes 3, 4 and 5 respectively. Node 5 is chosen next, etc.

8. Computational Experience with
the Algorithm as a Whole.

We have tested the algorithm as a whole on 6 sets of problems, that

• ~~~~~~~~~~ T - ~~~~~~~~~~~~~~~~~ ~~::



~~~~~~~
—_

~~~~~~~~~~~~~
5-5-

- ~~~~~~~~~~~~~~ 
5- - - -

-29-

we now describe. The problems are labelled with two numbers separated

by a dot. The first number is the set to which the problem belongs, the

second one distinguishes the problems within the same set. Thus 2.3 is the

third problem Li set 2,

Sets 1 and 2, containing 12 and 8 problems respectively, are from

Salkin and Koncal (9], who account for their origin as follows. Problem 1.1

was obtained from C. E. Lemke, problem 1.8 from IBM Buffalo, and the

remaining problems in set I from A. M. Geoff n on. All the problems in

set 1., except for 1.1, have unit costs. They all have randomly generated

coefficient matrices with 77. density.

Problem 2.1 is attributed by Salkin and Koncal (9] to American Airlines ,

problems 2.6 and 2.7 to IBM New York, while the remaining problems in set 2

were randomly generated by H. M. Salkin. The problems in set 2 have coefficient

matrices whose density varies between 27. and 117., and randomly generated costs

in th e ra nge (0 ,99] .

Sets 3, 4, 5 contain 10 problems each, randomly generated by the second

author, with coefficient matrices of 27. density, subject to the requirement

that every column has at least one, and every row at least two, nonzero

entries. The costs are randomly generated from the range [1,1001 .

Finally, set 6 contains S problems, also randomly generated by the

second author subject to the same conditions, with costs from the same range,

but with coefficient matrices of 57. density.

Table 6 compares the performance of our algorithm with two other

procedures, that of Salkin and Koncal (9], and of Lemke, Salkin and Spielberg

[81, on the 20 Salkin-Koncal problems (sets 1 and 2). The procedure used by

Sa lkin and Koncal is Gomory ’s all integer cutting plane algorithm, while the

____ - ~~~~~~~~~~~~~ ~~~~~~~~— 
- 

:_
~~

__ 
~~~- — — —a—


- -S — - - _ _ _ _ _

-30-

Table 6. Comparison of algorithms on 20 problems from the literature

Problem da ta Salkin- Lemke- Algorithm of section 2
Ko ncal (9] Salkin- (without branching)

No. m n Time* Spielberg [81 No. of Time~~*
____ — _____ ____________

Time** cuts ~~~ta1 SGRAD

1.1 15 32 0.51 2.7 0 0.73 0.46

1.2 30 30 0.41 5.3 0 0.77 0.46

1.3 30 40 0.78 19.7 18 1.28 0.63

1.4 30 50 16.33 21.6 10 1.57 1.01

1.5 30 60 2.47 ~ + 0 0.76 0.36

~ 18.0
1.6 30 60 10.07 1 29 2.00 0.96

1.7 30 70 5.66 ~) + 0 1.27 0.94
~ 20.4

1.8 30 70 4.68) 0 0.87 0.39

1.9 30 80 5.99 + 0 1.12 0.73
7 31.2

1.10 30 80 6.83) 6 1.23 0.73

1.11 30 90 16.99 1 + 0 1.16 0.79
~
‘ 30.6

1.12 30 90 19.16 -~ 72 6.60 1.76

2.1 104 133 5.70 424.0 22 8.03 4.61

2.2 200 413 26.71 625.9 6 12.00 7.10

2.3 200 300 15.90 461.3 0 6.10 4.12

2.4 200 500 22.70 803.5 0 6.23 3.74

2.5~ 50 450 >120.00 144.5 0 2.06 1.24

2.6 36 455 18.64 35.5 0 1.76 0.55

2.7 46 683 117.85 56.9 10 5.94 3.35

2.8 50 905 117.87 670.0 0 5.12 3.34

* UNIVAC 1108 seconds (about the same speed as DEC 20/50)
** IBM 360/50 seconds (4-5 times slower than DEC 20/50)
*** DEC 20/50 seconds
+ Average time for the two problems of the same size
++ Time limit exceeded

-5-——-- ~~~~~~~~~~~~~~~~~ 5 5 -~~~~

—

~~~~~~~~~~ ~~~~~~~~
_ -

~ 
- 

~~~
—

~~~~~~~~~~~~~~~~~~~ - ~~
-= •~~~~—

-
~~~~

-
~~~~~~~~~~

- - -  --
~

-
~~~~

-
~~~~~~~~ 

- --



—

-31-

algorithm of Le~~e, Salkin and Spielberg is a specialized implicit

enume ration procedure , with an imbedded linear program . Our algorithm

solved each of these problems without branching , and on the larger problems

of set 2 its performance was an order of magnitude better than that of the

other two procedures. Note that about 1/2 of the total time (in some

cases more, in others less than 1/2) was spent on SCRAD. The number of

times the subgradient procedure was used can be calculated by dividing the

number of Cuts by 10, and adding 1 to the result . The rest of the time

was spent on primal and dual heuristics and cut generation.

Note also that 7 of the 12 problems in set I, and 5 ~~ the 8 problems

in set 2, did not require any cuts. This does not necessarily imply that

the linear programsing. relaxation of (SC) had an integer solution in these

cases, but it does imply that the gap between the linear programsing

optimum and the integer optimum was less that 1. This small gap apparently

did not make most of these problems easy for the other two procedures, as

evid~iced by their performance on problems 1.11, 2.3, 2.4, 2.5, 2.7 and 2.8.

Our procedure , however , can take advantage of the small gap due to the use

of the primal heuristics.

Table 7 shows the performance of our algorithm, still without

branching , on the 10 ra ndomly generated problems of set 3. Note that

6 of these problems did not require cuts. As to the remaining 4 problems,

one of them (3.5) required only 4 cuts , while the other three required

large numbers of cuts and one of them (3.8) was actlaally not solved within

the time limit of 5 minutes. Had we used the full algorithm (with branching)

on these 3 problems, the number of cuts and the time needed would in all

likelihood have been smaller . However, we ran the full version of the

_ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~



—

~~~~~~~~~~~~~

-32-

Table 7. Algorithm of section 2 without branching

I Problem data No. of Time*
INo. in n cuts Total SGRAD

3.1 100 100 0 1.21 0.57

3.2 100 200 0 1.26 0.48

3.3 100 300 0 3.04 1.85

3.4 100 400 0 3.22 2.13

3.5 100 500 4 3.95 1.51

3.6 100 600 146 42.61 19.03

3.7 100 700 59 24.03 14.38

3.8~~ 100 800 682 >300 .00 65.06

3.9 100 900 0 13.27 11.18

3.10 100 1000 0 8.30 6.00

* DEC 20/50 seconds
** Time limit exceeded

algorithm only on problem 3.8, with the outcome tha t the problem was solved

in 92.24 seconds, with a search tree of 30 nodes and a total of 362 cuts. -

Table 8 describes the performance of our algorithm (in its complete version)

on the 20 randomly generated test problems of sets 4 and 5. It shows the value

of the optimum; the upper and lower bounds , as well as the number of

variables left , before the algorithm first branched ; the number of nodes and

cut s , and , f i na l l y , the total time and the time spent on subgradient optimization.

Six out of the 10 problems in set 4, and 4 out of the 10 problems in set 5, did

not require any branching. Of those problems tha t did not require branching,

4 in set 4 and 2 in set S did not requir . cu ts either. These 6 problems had a

gap of less than 1 between the linear programsing optimum and the integer

optimum, and for some of them the linear progra eming optimum may actually be

integer (since we don ’ t use th. simplex method , we do not necessarily d iscover

this when we solve a prob1~~).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •.jj i~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _  

-
~~ ~~~~~ — 

-



- 
- 

~~~~~~~~~~~~~~~~~~~~~~ — - - - •—~~~~~~ — -s - - - ________ - _______

-33-

Table 8. Complete algorithm on 27. density problems

(in = 200; ci = 1000 for set 4, ci 2000 for set 5)

No. z
•

Before first branching No. of No. of Time*
•

opt z~ ZL No. of nodes cuts Total SCRAD
I variables in

left search
I

•
tree

4.1 429 429 429 0 1 20 31.88 24.04

4.2 512 512 512 0 1 0 18.62 13.54

4.3 516 516 516 0 1 22 26.02 16.29

4.4 494 507 493.77 243 13 119 81.28 50.34

4.5 512 512 512 0 1 0 13.33 8.40

4.6 560 572 556.83 258 31 580 316.22 179.28

4 .7 430 430 430 0 1 0 19.59 14.11

4.8 492 492 478.78 99 14 274 167.15 110.52

4.9 641 648 636.57 224 37 686 416.46 215.41

4.10 514 514 514 0 1 0 22.34 16.50

5.1 253 256 250.58 204 30 473 327.89 181.20

5. 2~~ 307
k

315 299.32 408 5l~~ 625)600.OO 206.81

5.3 226 226 226 0 1 0 26.87 15.83

5. 4 242 247 240.29 258 :- 49 765 393.22 133.47

5. 5 211 211 211 0 1 15 38.73 24.31

5 .6 213 213 213 0 1 10 32.71 19. 47

5 .7 293 296 291.02 173 15 298 248.65 152.62

5.8 288 288 286.09 125
I

28 413 241.42 108.72

5 .9 279 281 276.21 181 7 118 140.61 94 .60

5. 10 265 265 265 0 1 0 25.89 15.38

* DEC 20/50 second s
** Time limit exceeded
+ Best solution found before exceeding time limit
4-4- 51 nodes generated , of which 30 fathomed

— - - - - —•-—-- -•5---- — —~~ --— —5----- - ~- -•-- —~~~~~~~~- — — - -—— - —5-- ~~~~ •—--—-•• - — - — - -

- r~ 5-

As to the remaining problems in sets 4 and 5, they were solved with

a reasonable computational effort , in terms of the number of nodes in t1~

search tree (never more than 50), the number of cutting planes (several

hundred at most), as well as in terms of computing time (between about 20

seconds and 7 minutes), except for problem 5.2, which could not be solved

within the time limit of 10 minutes. The best solution found for this

problem, wit h a va lue of 307, is at most 2.337. worse than the optimum,

since <299.32> is the lower bound found before the first branching occurred .

From Table 8 one can see again that the subgradient procedure in

most cases takes up between 1/2 and 2/3 of the computational effort. The

time needed to solve a problem strongly depends on the number of variables

left before one has to branch: there is a high positive correlation

between this number , and the number of nodes in the search tree. There is

an even higher correlation , of course, between the number of nodes in the

search tree aod the total time needed to solve the problem. On the other

hand, cuts are cheap to generate, and the number of cuts affects the total

time mainly through the fact that after every ~ cuts the subgradient procedure

is applied (which in turn is costly). This can be seen, for instance, by

looking at the 4 problems in set 5 that required no branching . Problems 5.3

and 5.10, which required no cuts ei ther , took 26-27 seconds to be solved .

Problems 5.6 and 5.5, which required 10 and 15 cuts respectively, required

only 33 and 39 seconds respectively, i.e., about 1.24-1.45 times the time

required for problems 5.3 and 5.10. The reason for this is that the

subgradient procedure was applied once to each of problems 5.3 and 5.10,

and twice to each of problems 5.6 and 5.5 The reason the computational

effort increased less than twice for the second pair of problems, is that

- -- -- -~~~~~ - ~~ —~~ ~~~~~~
-

~~~~~~~~~~~~~~ - -~~~ ------ — ~5--—-



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

-35—

SCRAD is the most tii5.3 consuming when applied for the irst time to a

problem, as discussed in section 5.

As cart be seen from the above computational experience, the algorithm

discussed here is a reasonably reliable , efficient tool for solving large,

sparse set covering problems, as well as for finding good approximate solutions

to problems that are too hard to be solved exactly. However, the strength

of the famil y of cuts from conditional bounds strongly depends on sparsity.

As problem density increases, the strength of the cuts dim!nishes, and so

does the efficiet y of this algorithm, at least in its versions that we have

tested . For relatively small problem sizes, the algorithm can cope well

with somewhat higher density, as illustrated by problem sets 1 (7% density)

and 2 (27. - 11% density), on which it clearly outperformed the other two

procedures that had been tried on those problems . But for larger problems,

this is unlikely to be the case. To see how fast the algorithm ’s

performance declines with problem density, we have run the code on a set

of 5 randomly generated 200 x 1000 problems with 5% density (problem set 6).

The results are shown in Table 9.

Table 9. Complete algorithm on 57. density r,roblems

(in = 200, ci = 1000)

-
- - No. Best Before first No. of nodes No. of Time*

z
~ _____ 

branching in search tree cuts
No. of Gene- Fathomed Total SGRA D

variable : rated
left

6.1k 141 143 132.07 189 143 116 2160 >1800 842

6.2~ 1.49 157 139.83 244 173 153 2412 >1800 920

6.3 145 145 139.60 117 163 163 2481 1548 787

6.4 131 135 128.05 147 21 21 275 194 106

______ 
161 173 152.52 278 161 140 2425 >1800 884

* DEC 20/50 seconds

+ Time limit exceeded

________ - - ---5— -~ ~~~i~i:_:_5-5_ ~~~~.5 - - - -  -5-- — ~~--.—-5-——--5-- - - - - 5---- - -- ____ --



s - 5-

-36-

Two of the 5 problems were solved within the 30 minutes time limit.

By no means accidentally, these two happen to be the problems with the smallest

numbers of variables left before branching. For the remaining 3 problems ,

the best solution found is guaranteed to be within 6%, 6.4% and 5.2~’-

respectively, of the optimum, though it could of course be much closer.

Though the algorithm exceeded the time limit before finishing 3 of the

five problems , from the data of Table 6 (ratio of fathomed versus unfathomed

nodes, ratio between numbers of variables left before branching for the

unsolved and the solved problems), it seems that all the problems could

be solved by a not too drastic extension of the time limit. In general,

the data of Tables 7, 8 and 9 show a certain reliability of the procedure

on randomly generated problems : the results are not wildly erratic , as it

so often happens with integer programming algori thms.

It is possible that a different version of our approach , that would

generate a larger number of cuts but retain only the stronger ones , and

rely more heavily on branching from a disjunction (7), would be more

successful on higher density problems . it is also possible , even highly

probable , that a different backtracking rule, that would lead to earlier

processing of the nodes with the best lower bounds , would provide a con-

siderably better bound on the quality of the solution obtained when the

procedure stops prematurely because of the time limit. These ideas , however,

hate not yet been tes ted.

_ _

_  
_  

“

~~~~~~~~~~~~~1


-

-37-

-

~~~

References

[lj E. Balas , “Set Covering with Cutting Planes from Conditiona l Bounds .”
MSRR No. 399, Carnegie-Mellon University, July 1976.

[ 2] E . Balas , “Cutting Planes from Conditional Bounos: A New Approach to
Set Covering .” MSRR No. 437 , Carnegie-Mellon University, July 1979.

[31 V . Chv~tal, “A Greedy Heuristic for the Set Covering Problem .”Publica tion 284 , D~partment d’ informatique et de Recherche
0p~ rationnel1e, Universit~ de Montr~al , 1978.

t41 J . Etcheberry, “The Set Covering Problem: A New implicit Enumeration
Algorithm.” Operations Research, 25 , l’Y 7, p. Th0-772.

(51 J. L. Coffin , “On the Convergence Rates of ~u~ -.zradient Optimization
Methods .” Mathematical Programming, 13 , ~~~~~, p. 329-348.

(61 M. Held , P. Wolfe and H. P. Crowde r , ‘Validation cf Subgradient
Optimization.” Mathematical Progracmnin,~~ ~~~, 1-’ -., p. ‘~2-88.

[7) A. Ho , “Worst Case Analysis of a C’ass of Set Covering Heuristics .”
GSIA , Carnegie-Mellon Universit:, June l’T’ ~

[8] C. E. Lenke , H. M. Salk in and K . Spielberg, “Set Covering by Single
Branch Enumeration with Linear Programming Sub p oblems .”
Operations Research, 19, 1971 , p. 998-1022.

[9] H. M. Salkin and R. D. Koncal , “Set Covering by an ~ll-Integer
Algorithm: Computationa l Experience.” ACM Jo- rnal, 20, 1973,
p. 189-193.

~~~~ 5- _ i ~~~~~~~~ s .55-—-5- - ~~~~~~~~~~~~~~~~~~~~ - —  - - —- ---5- 5-


-:
5-5-

~~~~~~~~~~~~~~ =~~~~~~~~~~ .-~L - - - 5 - - - - —  —5-- - — — —

- _ ... ~~~~~ UN -~~~ ~ ~5 I~ ~~*U~~ ~~1Sfl Ua~4

DEPORT CCCU: N~7Afl0N ~~~~
~EPQ~~7 IW MS&R 

~Z. GCV~ *CCES3ION ~O.I 3. ~ fC l.IcNrS CAT *I.OG w u a .~ t~~

Technical Report No. 438

- 
4._ T t T .  F --

~~J_4J J_ , —--———-—...-—.5- - — - - )‘ S. TYPE OF ~ E.OAT ~ PCM IOO COVE,~~ O

Set Covering Algorithms Using Cutt ing Planes , /~ Tech nica l Repor t 4

~~~~~~~ 
Heuris tics , and Subgradien t Optimization:

~ _/ July 1979
A Computationa l Study . - ?~~~ FONU•NG ORG. NECORT ~4IJMe, R

(~~~ E~~n/Balas~~~~ Andrew/Hot (~~~~~~~~~~~~~4-75-C~~~~l~~~~O47-048!
I

i -
.MCS76 -l 2,ø26~~~~

-
‘- ~~~RFOQMIN G ORGA N~ Z A T I O~1 NAM E AN O *OO~~ESS 10. ~~RO GMAM LL L LSICNT. PQOJ~~CT . ~ ASX

A R EA & WORK UNIT MUNSERS
Graduate School of Industrial Administration
Ca rnegie-Mellon Univers i ty

I
Pittsburgh , PA 15213 J ...~~ .~~~~

- f i
i ~~~~- CE ~.-.. .: ~~~~c ...~ ORESS

Personnel a nd Training Resea rch Prog rams
Office of Nava l Research (Code 434) ,. ~~~~~~~~~~~~~

- —

Arlington , VA 22217 36
£ &~ONi? CNING A GENCY N A M E I AOQ.RI$5(SI dSI~~~—~ ~~~~ r--~’.piflnp Of Ic.) IS. S ECURITY CLASS. (ef ~~~~~~~~~~~~~~~

-

J

Uncla:sified

- I

I ‘~~ IIS”~iO u O w sTA !ME~Ir ~I ~~Ii

Approved for publ ic release; dis tribu tion unlimi ted

~~~~~~~~~~~~~ i~~~~~
• - - ~ IS r ~~~dUT :OM ITA EldEST .~I U,. ~ &i~~~~St ~~~~~~~~ 3$c~~ 0, SI dIIIs ~WW S~~~~ ~~~~~~

—-5 

~~~~~~ ~~~~~~~~~~~~~~~
5. sUP•L ...uEN~~AF.Y MO l E S

~ i-
- - ;.,

• / -

WOMOS (C.~nlI,,u. An ~~~~~~~ •‘d• SI .,.....
~~7 ~Il IE.dseSIy hy)S.ca ., .,)

set covering, cu tt ing p lanes , condi tiona l bound s , heuris tics ,
subgradient optimization , implicit enumeration

10. Aa;rumcT f C.a hIm&. ‘ ~ ~~~~~~~~~~~

We report on the implementation and computational testing of several
versions of a set covering algorithm, based on the family of cutting planes

• # from conditional bounds, d~La ueee4—4~-—th. com~*nj~Q .paptr [2~~. The algorithm
uses a set of heuristics to find prime covers, another set of heuristics to
find feasible solutions to the dual linear program whIch are needed to
generate cuts , and subgradient optimization to find lower bounds . It also
uses implicit enumeration with some new branching rules. Each of the ~~~~~~~

DO
~~ J * M f l 473 EOITION OF I NOV 55 IS OUSOI•CTE Unclassified (over)

S/N 010 ~ 0 1 1 650 I
SECURITY CLAISIFICATIOR OP YMII 0 ~OE (4hs D~~ d I~a t F~~~)

G~ (‘(
~~~~~

~~ 5- - - - -- - -
-.-

~~~~~~~~ ---- ----- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5- .. - ~~~~~ . _.


-
-

~:: . 5- _ _ _ 5 - _ _ _ ____ •__5 - •~~~~~~ .5~5-~•_.5__•_•__•__ .—

..,~~~IJWI ?’f C1.ASSIFICA flON OF TM,$ PIQE(W~b.n C.,. £ne..s ~)

ingredients was implemented and tested in several versions. The variant
of the algorithm that emerged as best was run on 55 randomly generated
test problems (20 of them from the literature), with up to 200 constraints
and 2000 variables. The results show the algorithm to be more reliable
and efficient than earlier procedures on large, sparse set covering problems.

•
I

1
’

.

p

I $
I I

•
1 I

1 .

Unclassified
SECURITY cL..~aIFIcATloN OF Tm s$ 0&S*I~~~ .~~~a ZafScUW)

- . 5 - - . 5 -

-5-.;---- —5- —‘--5— - - - 5- — 5- “--- - - --- _ -- - . - . - 5-.— -
- . —-5-5-. -~~ —--5-.-- -5 - - — ~~~~~~~~~~~~~~~~~~~~~~~~~~

,

~~~~ •-

~~~~

-
-

~~~~~~~~

—
~~~~~

-

~~~~ —J

• 
-

.

-5

’,- 

.-r

~

- --5T
i

__~~~~~~~~
_

j_

~~~~~~~~~~~~~ 
_

__
-

_LI

__f;~~

I
__g;1~—

‘-
_ _ _

